Genome-Wide Association Studies and Next-Generation Sequencing in Plant Response
327
Sandhu, S. K., Pal, L., Kaur, J., & Bhatia, D., (2019). Genome wide association studies for
yield and its component traits under terminal heat stress in Indian mustard (Brassica juncea
L.). Euphytica, 215, 1–15.
Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J., (2004). Metabolite fingerprinting:
Detecting biological features by independent component analysis. Bioinformatics, 20,
2447–2454.
Schuster, S. C., (2008). Next-generation sequencing transforms today’s biology. Nature
Methods, 5, 16–18.
Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage,
M., (2019). Heavy metal-induced oxidative stress on seed germination and seedling
development: A critical review. Environ. Geochem. Health, 4, 1813–1831.
Tessmann, E. W., & Van, S. D. A., (2018). GWAS for Fusarium head blight related traits in
winter wheat (Triticum aestivum L.) in an artificially warmed treatment. Agronomy, 8, 68.
Thabet, S. G., Moursi, Y. S., Karam, M. A., Graner, A., & Alqudah, A. M., (2018). Genetic
basis of drought tolerance during seed germination in barley. PloS One, 13, e0206682.
Thrash, A., Tang, J. D., DeOrnellis, M., Peterson, D. G., & Warburton, M. L., (2020). PAST:
The pathway association studies tool to infer biological meaning from GWAS datasets.
Plants, 9, 58.
Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.
R., et al., (2011). Genome-wide association study of leaf architecture in the maize nested
association mapping population. Nat. Genet., 43, 159–162.
Torrigiani, P., Rabiti, A. L., Bortolotti, C., Betti, L., Marani, F., Canova, A., & Bagni, N.,
(1997). Polyamine synthesis and accumulation in the hypersensitive response to TMV in
Nicotiana tabacum. New Phytol., 135, 467–473.
Tucker, T., Marra, M., & Friedman, J. M., (2009). Massively parallel sequencing: The next
big thing in genetic medicine. Amer.J. Human Genet., 85, 142–154.
Verma, S., Nizam, S., & Verma, P. K., (2013). Biotic and abiotic stress signaling in plants.
In: Stress Signaling in Plants: Genomics and Proteomics Perspective (Vol. 1, pp. 25–49).
Springer, New York, NY.
Verslues, P. E., Lasky, J. R., Juenger, T. E., Liu, T. W., & Kumar, M. N., (2014). Genome-wide
association mapping combined with reverse genetics identifies new effectors of low water
potential-induced proline accumulation in Arabidopsis. Plant Physiol., 164, 144–159.
Vilhjálmsson, B. J., & Nordborg, M., (2013). The nature of confounding in genome-wide
association studies. Nat. Rev. Genet., 14, 1, 2.
Wan, H., Chen, L., Guo, J., Li, Q., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., & Shen, J., (2017).
Genome-wide association study reveals the genetic architecture underlying salt tolerance-
related traits in rapeseed (Brassica napus L.). Front. Plant Sci., 8, 593.
Wang, L., Yang, Y., Zhang, S., Che, Z., Yuan, W., & Yu, D., (2020). GWAS reveals two novel
loci for photosynthesis-related traits in soybean. Mol. Genet. Genome, 295.
Wang, R., Xu, L., Zhu, X., Zhai, L., Wang, Y., Yu, R., Gong, Y., et al., (2015). Transcriptome
wide characterization of novel and heat-stress-responsive microRNAs in radish (Raphanus
sativus L.) using next-generation sequencing. Plant Mol. Biol. Rep., 33, 867–880.
Wang, Y., Xu, L., Chen, Y., Shen, H., Gong, Y., Limera, C., & Liu, L., (2013). Transcriptome
profiling of radish (Raphanus sativus L.) root and identification of genes involved in
response to lead (Pb) stress with next generation sequencing. PLoS One, 8, e66539.
Wellcome Trust Case Control Consortium, (2007). Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature, 447, 661.