Genome-Wide Association Studies and Next-Generation Sequencing in Plant Response

327

Sandhu, S. K., Pal, L., Kaur, J., & Bhatia, D., (2019). Genome wide association studies for

yield and its component traits under terminal heat stress in Indian mustard (Brassica juncea

L.). Euphytica, 215, 1–15.

Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J., (2004). Metabolite fingerprinting:

Detecting biological features by independent component analysis. Bioinformatics, 20,

2447–2454.

Schuster, S. C., (2008). Next-generation sequencing transforms today’s biology. Nature

Methods, 5, 16–18.

Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage,

M., (2019). Heavy metal-induced oxidative stress on seed germination and seedling

development: A critical review. Environ. Geochem. Health, 4, 1813–1831.

Tessmann, E. W., & Van, S. D. A., (2018). GWAS for Fusarium head blight related traits in

winter wheat (Triticum aestivum L.) in an artificially warmed treatment. Agronomy, 8, 68.

Thabet, S. G., Moursi, Y. S., Karam, M. A., Graner, A., & Alqudah, A. M., (2018). Genetic

basis of drought tolerance during seed germination in barley. PloS One, 13, e0206682.

Thrash, A., Tang, J. D., DeOrnellis, M., Peterson, D. G., & Warburton, M. L., (2020). PAST:

The pathway association studies tool to infer biological meaning from GWAS datasets.

Plants, 9, 58.

Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.

R., et al., (2011). Genome-wide association study of leaf architecture in the maize nested

association mapping population. Nat. Genet., 43, 159–162.

Torrigiani, P., Rabiti, A. L., Bortolotti, C., Betti, L., Marani, F., Canova, A., & Bagni, N.,

(1997). Polyamine synthesis and accumulation in the hypersensitive response to TMV in

Nicotiana tabacum. New Phytol., 135, 467–473.

Tucker, T., Marra, M., & Friedman, J. M., (2009). Massively parallel sequencing: The next

big thing in genetic medicine. Amer.J. Human Genet., 85, 142–154.

Verma, S., Nizam, S., & Verma, P. K., (2013). Biotic and abiotic stress signaling in plants.

In: Stress Signaling in Plants: Genomics and Proteomics Perspective (Vol. 1, pp. 25–49).

Springer, New York, NY.

Verslues, P. E., Lasky, J. R., Juenger, T. E., Liu, T. W., & Kumar, M. N., (2014). Genome-wide

association mapping combined with reverse genetics identifies new effectors of low water

potential-induced proline accumulation in Arabidopsis. Plant Physiol., 164, 144–159.

Vilhjálmsson, B. J., & Nordborg, M., (2013). The nature of confounding in genome-wide

association studies. Nat. Rev. Genet., 14, 1, 2.

Wan, H., Chen, L., Guo, J., Li, Q., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., & Shen, J., (2017).

Genome-wide association study reveals the genetic architecture underlying salt tolerance-

related traits in rapeseed (Brassica napus L.). Front. Plant Sci., 8, 593.

Wang, L., Yang, Y., Zhang, S., Che, Z., Yuan, W., & Yu, D., (2020). GWAS reveals two novel

loci for photosynthesis-related traits in soybean. Mol. Genet. Genome, 295.

Wang, R., Xu, L., Zhu, X., Zhai, L., Wang, Y., Yu, R., Gong, Y., et al., (2015). Transcriptome­

wide characterization of novel and heat-stress-responsive microRNAs in radish (Raphanus

sativus L.) using next-generation sequencing. Plant Mol. Biol. Rep., 33, 867–880.

Wang, Y., Xu, L., Chen, Y., Shen, H., Gong, Y., Limera, C., & Liu, L., (2013). Transcriptome

profiling of radish (Raphanus sativus L.) root and identification of genes involved in

response to lead (Pb) stress with next generation sequencing. PLoS One, 8, e66539.

Wellcome Trust Case Control Consortium, (2007). Genome-wide association study of 14,000

cases of seven common diseases and 3,000 shared controls. Nature, 447, 661.